выбор региона
+ Добавить
Компанию, объявление, отзыв...

Пособие к СНиП 2.03.01-84 по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов.

Часть 1   |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6    |    Часть 7    |    Часть 8    |    Часть 9   

Пример 12. Дано: свободно опертый железобетонный ригель перекрытия пролетом l = 8,3 м нагружен равномерно распределенной нагрузкой: временной эквивалентной n = 114 кН/м и постоянной g = 46 кН/м; размеры поперечного сечения: b = 300 мм, h = 800 мм, h0 = 700 мм; бетон тяжелый класса В30 (Rb = 15,5 МПа, Rbt = 1,1 МПа с учетом gb2 = 0,9); хомуты сварные из арматуры класса А-III (Rsw = 290 МПа); усилие предварительного обжатия Р = 1600 кН.

Требуется определить диаметр и шаг хомутов у опоры, а также выяснить, на каком расстоянии от опоры и как может быть увеличен их шаг.

Р а с ч е т. Наибольшая поперечная сила в опорном сечении равна:

132009.gif = 664 кН ,

где q = n + g = 114 + 46 = 160 кН/м.

Определим требуемую интенсивность хомутов приопорного участка согласно п. 3.23б.

Поскольку jn = 0,1 132010.gif = 0,693 > 0,5,

то принимаем „ = 0,5.

Из формулы (73) при jf = 0 и jb2 = 2 (см. табл. 29) получаем:

Mb = jb2 (1 + jn) Rbt b h02 = 2×1,5×1,1×300×700 = 485•10 H×мм = 485 кН×м;

q1 = g + n/2 = 46 + 114 / 2 = 103 кН/м (Н/мм);

Qb1 = 2132011.gif = 447 кН.

Так как 132012.gif = 745 кН > Qmax = 664 кН,

интенсивность хомутов определяется по формуле

132013.gif= 124,3 Н/мм.

При этом 132014.gif= 155 > qsw = 124,3 Н/мм,

следовательно, принимаем qsw = 155 Н/мм.

Согласно п. 5.42, шаг у опоры должен быть не более 1/3h = 800/3 = 267 мм и не более 500 мм, а в пролете - не более 3/4h = 600 мм и не более 500 мм. Максимально допустимый шаг у опоры, согласно формуле (67), равен:

132015.gif= 548 мм.

Принимаем шаг хомутов у опоры s1 = 250 мм, а в пролете - 2s1 = 500мм.

Отсюда Аsw = qsw s / Rsw = 155 • 250/290 = 134 мм2.

Принимаем в поперечном сечении два хомута диаметром 10 мм (Asw = 157 мм2).

Тогда 132016.gif= 182 Н/мм ;

qsw2 = 0,5qsw1 = 91 Н/мм.

Длину участка с наибольшей интенсивностью хомутов qsw1 определяем согласно п. 3.24.

Так как qsw1- qsw2 = 182 - 91 = 91 Н/мм < q1 = 103 Н/мм, значение с равно:

132017.gif6,36 м > 132018.gif= 2,33 м.

Принимаем с = 2,33 м.

По формуле (77) при qsw = qsw1 = 182 Н/м вычисляем c01:

132019.gif= 1,632 м.

Тогда 132020.gif =

132021.gif1,45 м < 132022.gif= 2,08 м.

Принимаем длину участка с шагом хомутов s = 250 мм не менее 2,08 м.

Пример 13. Дано: железобетонная балка покрытия, нагруженная сосредоточенными силами, как показано на черт. 22, а; размеры поперечного сечения — по черт. 22, б; бетон тяжелый класса В50 (Rbt = 1,4 МПа при gb2 = 0,9); хомуты из арматуры класса A-III (Rsw = 285 МПа); усилие предварительного обжатия Р = 640 кН.

132023.gif

Черт. 22. К примеру расчета 13

Требуется определить диаметр и шаг хомутов, а также выяснить, на каком расстоянии и как может быть увеличен их шаг.

Р а с ч е т. Сначала определим, согласно п. 3.22, величину Мb:

jb2 = 2 (см. табл. 29); h'f = 150 + 100/2 = 200 мм (см. черт. 22,б);

b'f- b = 280 - 80 = 200 мм < 3h¢f; h0 = 890 - 90 = 800 мм;

132024.gif0,469 < 0,5 ;

132025.gif= 0,714 > 0,5 .

Принимаем jn = 0,5.

Поскольку 1 + jf + jn > 1,5, принимаем 1 + jf + jn = 1,5, Mb = jb2 (1 + jf + jn) Rbt b h02 = 2 × 1,5 × 1,4 × 80 × 8002 = 215 × 106 Н×мм = 215 кН×м.

Определим требуемую интенсивность хомутов согласно п. 3.23а, принимая длину проекции наклонного сечения с равной расстоянию от опоры до первого груза - с1 = 1,3 м.

Поперечная сила на расстоянии c1 от опоры равна Q1 = 288,6 кН (см. черт. 22, a).

Из формулы (72) имеем

132026.gif164,5 кН > Qb,min = jb3 (1 + jf + jn) Rbt b h0=
= 0,6
× 1,5 × 1,4 × 80 × 800 = 80,64 кН.

Тогда x1 =132027.gif = 0,75.

Поскольку c1 = 1,3 м < 2h0 = 2 × 0,8 = 1,6 м, принимаем c0 = c1 = 1,3 м;

x01 = 132028.gif= 0,396 .

Так как x01 = 0,396 < x1 = 0,75 < 132029.gif = 1, значения qsw(1) определяем по формуле (80):

qsw(1) = 132030.gif= 94,8 кН/м.

Определим qsw(2) при значении с, равном расстоянию от опоры до второго груза, с2 = 2,8 м:

132031.gif= 76,8 кН < Qb,min = 80,64 кН.

Принимаем Qb2 = 80,64 кН.

Соответствующая поперечная сила равна Q2 = 205,2 кН.

Поскольку c2 = 2,8 м > 2h0 = 1,6 м, принимаем c0 = 2h0 = 1,6 м;

132032.gif

132033.gif1;

132034.gif= 1,75.

Следовательно, значение qsw(2) определяем по формуле (80):

132035.gif77,85 кН/м.

Принимаем максимальное значение qsw = qsw(1) = 94,8 кН•м.

Согласно п. 5.42, шаг s1 у опоры должен быть не более 1/3h = 890/3 = 297 мм и не более 500 мм, а в пролете — не более 3/4h = 3/4 • 890 = 667 мм и не более 500 мм. Максимально допустимый шаг у опоры, согласно формуле (67), равен:

smах = jb4 (1+jn) Rbtbh02 / Qmax = 1,5×1,5×1,4×80×8002/294,6×103 = 547 мм.

Принимаем шаг хомутов у опоры s1 = 150 мм, а в пролете — s2 = 2s1 = 300 мм.

Отсюда 132036.gif = 50 мм2 .

Принимаем одноветвевые хомуты диаметром 8 мм (Аsw = 50,3 мм2).

Длину участка с шагом s1 определяем из условия обеспечения прочности согласно п. 3.24.

При этом 132037.gif= 95,6 Н/мм; qsw2 = 0,5 qsw1 = 47,8 Н/мм; qsw1- qsw2 = qsw2 = 47,8 Н/мм.

Зададим длину участка с шагом хомутов s1 = 150 мм равной расстоянию от опоры до второго груза l1 = 2,8 м и проверим условие (71) при значении с, равном расстоянию от опоры до третьего груза: с = 4,3 м >l1.

Значение c01 определим по формуле (77) при qsw = qsw1 = 95,6 кН/м:

132038.gif= 1,5 м < 2h0 = 1,6 м .

Так как с01 = 1,5 м = с - l1 = 4,3 - 2,8 = 1,5 м, выражение qswc0 заменим выражением qsw2 (c - l1) = 47,6 × 1,5 = 71,4 кН.

Qb = Мb/с = 132039.gif = 50 кН < Qb,min = 80,64 кН.

Принимаем Qb = Qb,min = 80,64 кН.

Соответствующая поперечная сила равна Q3 = 121,8 кН (см. черт. 22, a).

Qb + qswc0 = 80,64 + 71,4 = 152,04 кН > Q3 = 121,8 кН,

т. е. прочность наклонного сечения обеспечена.

Таким образом, длину участка с шагом хомутов s1 = 150 мм принимаем равной l1 = 2,8 м.

Пример 14. Дано: плита перекрытия с растянутой гранью, наклонной к горизонтали, с размерами по черт. 23; бетон тяжелый класса В40 (Rbt = 1,25 МПа с учетом gb2 = 0,9); хомуты вертикальные класса А-III, диаметром 8 мм (Rsw = 285 МПа, Asw = 50,3 мм2) и шагом s = 100 мм; усилие предварительного обжатия Р = 980 кН; временная эквивалентная нагрузка n = 24,2 кН/м; постоянная нагрузка g = 7,8 кН/м; поперечная сила на опоре 186 кН.

Требуется проверить прочность наклонного сечения по поперечной силе.

132040.gif

Черт. 23. К примеру расчета 14

Р а с ч е т ведем согласно п. 3.27.

Из черт. 23 имеем h03 = 300 — 75 = 225 мм. Размер b принимаем на уровне середины высоты опорного сечения:

132041.gif= 233 мм.

Определим для опорного сечения величины jfs, jns и Mbs по формулам (74), (75), (73):

b'f - b = 3h¢f = 3 • 60 = 180 мм;

132042.gif= 0,154 ;

132043.gif= 1,495 > 0,5 .

Принимаем 1 + jfs + jns = 1,5 ; jb2 = 2 (см. табл. 29);

Mbs = jb2 (1 + jfs + jns) Rbt b h02 = 2 × 1,5 × 1,25 × 233 × 2252 = 44,2 • 106 H×мм.

Определим величины qsw и qinc, принимая tgb = tgb1 = 0,0815:

132044.gif= 143,3 Н/мм ;

qinc = jb2 (1 + jfs + jns) Rbt b tg2b = 2× 1,5 × 1,25 × 233 × 0,08152 = 5,8 Н/мм;

q1 = g + n/2 = 7,8 + 24,2/2 = 19,9 кН/м (Н/мм).

Проверим условие (87):

0,56 qsw- 2,5 132045.gif = 0,56 × 143,3 - 2,5 132046.gif =
= 21,1 Н/мм > q1 = 19,9 Н/мм.

Условие (87) выполняется, и, следовательно, невыгоднейшее значение с определяем по формуле (88) :

132047.gif= 901 мм.

Рабочая высота поперечного сечения на расстоянии с = 901 мм от опоры равна:

h0 = h0s + ctgb = 225 + 901 × 0,0815 = 298мм,

а ширина ребра на уровне середины высоты h = 298+75 = 373 мм равна

132048.gif= 226 мм.

Поскольку 132049.gif = 993 мм > с = 901 мм, оставляем с = 901 мм.

Определим соответствующее значение Мb, принимая 1+jfs+jns = 1,5:

Мb = 2 × 1,5 × 1,25 × 226 × 2982 = 75,2 × 106 H × мм.

Значение c0 равно:

132050.gif= 725 мм > 2h0 = 2 × 298 = 596 мм.

Принимаем с0 = 596 мм.

Проверяем условие (71), принимая поперечную силу в конце наклонного сечения равной Q = Qmax- q1c = 186 — 19,9 × 0,901 = 168,1 кН:

132051.gif= 83,5 × 103Н ;

Qb + qswc0 = 83,5 + 143,3